基于电商平台的数据分析基本指标体系,当产品

作者: 澳门金莎娱乐网站  发布:2019-08-01

这里想讲的并非传统的BCG矩阵,而是BCG矩阵的变阵,或者叫类BCG矩阵。

6 、 市场营销活动指标

用户:新用户、活跃用户、沉寂用户占比的变化,增长的趋势等等

四、结语

图片 1

▶如何获取数据,获取什么样的数据?

LRFMC模型提供了一个更完整的视角,能更全面地了解一个用户的特征,LRFMC各个维度的释义如下:

电商行业是当前市场十分火热的行业,也是对数据分析师需求很大的行业,这篇文章可以帮助没有电商行业经验的同学快速了解电商数据分析的指标和框架。那么话不多说,咱们开始吧~

Q4: 不强制登陆的app,如何定义独立用户。目前我们是获取手机信息,但并不准确

图片 2

在某些商业形态中,客户与企业产生连接的核心指标会因产品特性而改变。如互联网产品中,以上三项指标可以相应地变为下图中的三项:最近一次登录、登录频率、在线时长。

**仅需1杯咖啡钱,无限次观看12个顶级增长专家一天的分享录播,学会零成本运营产品的增长方法,赚千倍回报。**

所以,在分析用户画像时,需要根据场景进行用户分类,并对比各类用户与总体间的差异,这样才能保证分析结果的可信性和适用性,而TGI指数就是很好的对比指标。

以上共从8个方面来阐述如何对电商平台进行数据分析,当然,具体问题具体分析,每个公司的侧重点也有所差异,所以如何分析还需因地制宜。

Q1:一个电商平台,应该着重关注什么数据,怎样设计数据后台?

二、用户分析类2.1 TGI指数

图片 3

A1:不同行业,不同业务会有相同宏观的指标,也有细化到本行业,本业务的指标。需要从宏观到微观的拆解指标。大量的数据如何为我们所用?需要了解产品业务,明确问题的本质,大量的深入的产品实践。大胆的提出假设,然后通过数据理性的验证。我们还会有更多的线下线上活动帮助大家拆解数据分析指标。

同比热力图分析法这个名称是我自己造的,其实无非是把各个业务线的同比数据放到一起进行比较,这样能更为直观地了解各个业务的状况。

图片 4

Q5: 若想了解某个行业,有哪些平台可以拿到相对靠谱数据以供分析?

原标题:想成为数据产品经理,先掌握这些数据分析方法论

8 、市场竞争指标

请记住,这些分析必须要在“用户”级别能够做分析,而不是一个单纯流量级别的分析,才有未来的核心意义。然后将usage在客户公司级别进行汇总,比较在公司级别的使用度,使用深度和未来的续约付费率一般呈正相关。

产品运营的常用指标如下:

图片 5

A3:先要全面的找到支付转化的全部关键转化路径,然后看每个转化路径上面关键点之间的转化率。比如到商品详情页面,可以从搜索页面、分类页面、频道页面、品牌页面、活动页面、首页、关联销售推荐、甚至直接访问到达商品详情页面。每个转化路径和转化量的占比都要考虑。然后再找出量大且转化率低的路径先优化,量小转化率高的路径可以加强并且scale。

GMV下降如果是因下单用户减少所造成的,那么是访客数(流量)减少了,还是转化率下降了呢?如果是访客数减少了,那是因为自然流量减少了,还是因为营销流量不足?

即对访问你网站的访客进行分析,基于这些数据可以对网页进行改进,以及对访客的行为进行分析。

▶产品运营如何学习数据分析?

除了电商业务的分析以外,同比热力图同样适用于互联网产品数据指标的监控及分析,该分析方法的关键点在于拆解核心指标,在本文后面的产品运营类方法中将会介绍相关指标的拆解方法。

4 、 客户价值指标

▶使用A/B测试的正确姿势

通过同比热力图的分析,首先,可以通过纵向对比了解业务自身的同比趋势,其次,可以通过横向对比了解自身在同类业务中的位置,此外,还可以综合分析GMV等核心指标变动的原因。

通过客户分类,对客户群体进行细分,区别出低价值客户、高价值客户,对不同的客户群体开展不同的个性化服务,将有限的资源合理地分配给不同价值的客户,实现效益最大化。

●Referral 传播推荐

除此之外,我们还可以根据以下场景构建类BCG矩阵:

图片 6

A1:首先如果您有时间,看看精益分析《lean analytics》,这本书是我在美国很好的朋友写的书。另外一本,“build measure,learn”也是我在LinkedIn的团队成员写的书。都是很好的入门教材。再次我觉得可以看一下基础的统计书籍,因为数据分析的核心要有基本的统计知识。Using R系列是很好的起点。

RFM模型是客户关系管理中最常用的模型,但这一模型还不够完善,比如对于M(Money),即消费金额相等的两个用户而言,一个是注册两年的老用户,一个是刚注册的新用户。对于企业来说,这两个用户的类型和价值就完全不同,因此我们需要更全面的模型。

主要监控某次活动给电商网站带来的效果,以及监控广告的投放指标。

Q2:数据方面偏菜鸟用户,有哪些数据可视化工具值得推荐?

产品经理的概念在不断泛化。近些年来,随着互联网行业的发展,越来越多的企业意识到了大数据和精细化运营的重要性,为了更好地挖掘数据的价值,指导业务的优化和发展,数据产品经理应运而生,他们基于数据分析方法发现问题,并提炼关键要素,设计产品来实现商业价值。

分析卖家评论,以及投诉情况,发现问题,改正问题。

Q3: 做内容的网站,如何结合业务判断需要获取哪些和用户相关的数据?

当前在互联网领域,除了用户实名数据以外,其他用户的画像维度一般都通过建立模型进行判断,因此无法完全保证准确性,但不同于小样本调研,大数据分析是能容忍一定数据误差的,不过,这一切都要建立在对比的基础上。

首先要构建电商数据分析的基本指标体系,主要分为8个类指标,即:

本文根据GrowingIO创始人&CEO张溪梦与产品经理在线交流问题整理编辑,希望对产品经理提升数据分析能力有较好的帮助。

三、产品运营类

从流量、订单、总体销售业绩、整体指标进行把控,起码对运营的电商平台有个大致了解,到底运营的怎么样,是亏是赚。

想知道更多的增长方式和案例?您可以观看互联网产品增长大会的录播,听听国内通过低成本预算获得几亿用户的著名公司创始人们怎么说,如饿了么联合创始人汪渊、触宝科技联合创始人兼任 CEO王佳梁,WiFi万能钥匙联合创始人张发有等。

R(Recency):代表用户最近一次消费至今的时间长度,反映了用户当前的活跃状态。

2 、 网站流量指标

点击http://event.3188.la/323568232或扫描图中的二维码进入报名页。

1.3 类BCG矩阵

在面向客户制定运营策略、营销策略时,我们希望能够针对不同的客户推行不同的策略,实现精准化运营,以期获取最大的转化率。精准化运营的前提是客户关系管理,而客户关系管理的核心是客户分类。

最重要的,是产品每一个功能的使用者数量,使用的频次,转化漏斗,转化率。

BCG矩阵大家都非常熟悉了,以市场占有率和增长率为轴,将坐标系划分为四个象限,用于判断各项业务所处的位置。

1 、总体运营指标

A5:这个部分需要的工具有很多,看您的业务是以App为主,还是Web为主。基本上应该从流量,市场占有率,还有用户交互使用深度、舆情等角度入手。每一个都有不同的工具能够辅助。比如说Alexa,AppAnnie,艾瑞的互联网行业研究报告,Gartner的研究报告,IDC,TalkingData的游戏行业研究等等都是一些好的起点。

L(lifetime):代表从用户第一次消费算起, 至今的时间,代表了与用户建立关系的时间长度,也反映了用户可能的活跃总时间。

图片 7

以在线商城页面设计为例,用户浏览商品、提交订单,点击支付,完成购买形成了客户的核心路径,但是日常业务中经常遇到客户转化率过低的情形。GrowingIO的用户转化漏斗可以帮助产品经理分析客户到底在哪一步流失较高,然后借助用户细查功能来验证前面的假设猜想。从而提升帮助产品经理找出产品设计的缺陷,后期尽快优化。

本文由金沙国际唯一官网发布于澳门金莎娱乐网站,转载请注明出处:基于电商平台的数据分析基本指标体系,当产品

关键词: